Squared Hopf algebras and reconstruction theorems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebras—variant Notions and Reconstruction Theorems

Hopf algebras are closely related to monoidal categories. More precise, k-Hopf algebras can be characterized as those algebras whose category of finite dimensional representations is an autonomous monoidal category such that the forgetful functor to k-vectorspaces is a strict monoidal functor. This result is known as the Tannaka reconstruction theorem (for Hopf algebras). Because of the importa...

متن کامل

Tannaka Reconstruction for Crossed Hopf Group Algebras

We provide an analog of Tannaka Theory for Hopf algebras in the context of crossed Hopf group coalgebras introduced by Turaev. Following Street and our previous work on the quantum double of crossed structures, we give a construction, via Tannaka Theory, of the quantum double of crossed Hopf group algebras (not necessarily of finite type).

متن کامل

Baxter Algebras and Hopf Algebras

George E. Andrews Department of Mathematics Pennsylvania State University University Park, PA 16802, USA ([email protected]) Li Guo Department of Mathematics and Computer Science Rutgers University at Newark Newark, NJ 07102, USA ([email protected]) William Keigher Department of Mathematics and Computer Science Rutgers University at Newark Newark, NJ 07102, USA ([email protected]...

متن کامل

Cohomology of Hopf C-algebras and Hopf von Neumann algebras

We will define two canonical cohomology theories for Hopf C∗-algebras and for Hopf von Neumann algebras (with coefficients in their comodules). We will then study the situations when these cohomologies vanish. The cases of locally compact groups and compact quantum groups will be considered in more details. 1991 AMS Mathematics Classification number: Primary: 46L55, 46L05; Secondary: 43A07, 22D25

متن کامل

Path Hopf Algebras and Co-path Hopf Algebras

The main goal is to study the Hopf algebra structure on quivers. The main result obtained by C. Cibils and M. Rosso is improved. That is, in the case of infinite dimensional isotypic components it is shown that the path coalgebra kQ admits a graded Hopf algebra structure if and only if Q is a Hopf quiver. All nonisomorphic point path Hopf algebras and point co-path Hopf algebras are found. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1997

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-40-1-111-137